
the string relays os the $[D-13]$ eyptann would be of interest To the envisioning poly graphic Bandot schemes, constituting a means of overcoming some of the technical difficulties inherent in ouch systems.

Gailswogner $10 T$ TV.

Declassified by D. Janosek, Deputy Associate Direct a. for Policy, and Records on $10 \sim 70 w 200$ and by 243
2. Apparatua i3i3 was dosigned to interaept A2 Teleprtator troftic. In A2 TY procobme two tivo unit codo mossagas ore tranamittod in steh fashion that the impulees of each symbol of measoge τ are sollowed by these of one symbor of moasage If ond Linally by two impu?ses as phase aigual for aymehzonisation purposea Apparatas 1313 separates the incoming massages so that oue teleprturn prints only nessege I and the otber only message II.

> Provisionel Description and Instructions for use of Apparatus $1313 . \quad$ (27 Oct. 1944)

Apparatus 2313 semves exolusively for intercepting $A 2$ teleprinter traffic and may be used for operation with Mark (t) as yall as ath apece $(-)$ chment (Avboits- ovie auch Ruhestrombetrieb). The A2 teleprinter procedure trensmits two wessages in such fashion that, using the fariliar flve-impulse slphabet, the five impulees of a letter, figuce or sisn of message i are trensmitted evecessively, followed by the five inpulses belonging to message II. Zolloving this come tro impulses ra phase signel for syncironizetion purposes. Hanca, for the process ve requiro $5 \div 5 \div 2=\underline{22}$ Lopulses, Which sce 821 of the saus time lencth After sanding these 12 Impulses the procedurs 23 repeaced, thore follov Ifve Impulsos of mesasge I, Ilve of inessage II and finnally two of the phase-81gas1, etc. Aparatura 1313 separates the incoming messagas arter it has bean brought into synchronization with the tranamitter by means of the transmitted phase-signsl, 80 thet one teleprinter prints only messege I, the other only messege II. The noxal telegraphio speed for teleprintars is 50 bauds. In wany ceses, however, It heppens thst the speed of the sender is lover, sey 40 bauds. To enable the teleprinters attached to apparatus 2313 to adjust themselves to such posaible variations, Storeme (Spelcher) are provided in Apparatus 1313 which perint a chenge of telegraphic speed. Tho Stert-Stop impulses reguired for oporating a toleprinter are added in proper saquence to the five impulses of esch message in Apparetus 1313.

Strueture of appacatus 2523.
As shown in Fig. I the following removable separate units are wounted in a frame and connected electrically by cebles in tho erame.

1) 60 v stage, aee diagran 15VSt 1309-203
2. Tube ractiflan IT, see diagran 13VSt 1309-201
3. Tube ractiflur I, n E. gVgt 1309-200
4) 12 v stage, tee dLagrem EVSt 1309-778
5) Nachanfiel pawh, see diagnam EVSt 1313-146 and

$$
1309-382
$$

6) Receiver amplirior uth regulating device,
see diagrein DVat 1309-240

7) Symehconisazian anplitlor, see diagrain DVst 1309-202
8) toftimol purwt, eve Aliggate cust 1323-145
$\{11,22,23,24\}$ asosa fon sonnecting-cables and noplacement perts.
The blytug of the fatere eay he seen in the diagram CVSt 1313-148 The ezterial currans jupals fCr the apparatus i.s from a 220 V ae 11 ne , atifluhons of -10% ztil= vermit sefe operation.
ather dusorit eopply ylthin the apparatus is cared fore by the rect1[1er stages 2-6 adoending to R1g. 1 .
 source for the bolttry puriont ciroutts of the storage relags and Por th. olrousta of the veceiver magnets in the keleprinters. Sube rootified if lo a evabllized pover source. It provides the plate oumant for thi fifurstor tit the symchronization emplif1er, for Che recelver amolifles vifthout regulstor device, also oursent for holding oirouta of sher tho receivar relays in the recelver eupiliter,

FUP JECHL
moreover, in the tube rectifier II the grid voltages (biases) are taken off which are required in the severel component parts. Tube rectifier I contains two separeted rectifiers with edequetely plenned swoothing illters (Beruhigungsglieder). The finst rectifler provides plate curcent for the last two stages in the synchronization amplifier.and the 3 tubes of the regulator devics in the receiver ampifier. The second rectifier delivers plate current for the storage tubes. The 12 v stage contains two separate dry rectipler asserabiles. Assembly 1 delivers eurrent for the motor to drive the dia-tributor-dises and the test-sender in the mechanical pert. Assembly 2 gives, after careful smoothing, the current for the rotating, megnetlcally functioning derlection syatem (Ablenksystem) of the cathode ray oscillogeaph in the mechanical part.
The Mechanical part. A motor mounted here drives via a set of gears the brushes for two distributor dises, 1 test sender and the magnetically functioning deflection system (Ablenksystem) for the cathode rey oscillogreph. The current supply of the cathode ray tube comes from the so-called high-voltage rectifier located above the tube. A.lso, in the mechanical part are the supprassore for the distributor discs, the storage tube comon to the two storers and the armature and field resiecers necessary for regulating the speed of the motor. In Ilg. 2 the screen (Schtru) of the cathode ray tube will be recogaized at I. The setting (tuning) of the brililiance of the Cathode Rey soot is sccomplished at 2 and that of its sherpness at 3. With switch 4 it 18 possible to switch the motor on and off. Knob 5 serves for regulating the revolutions of the machine to get local synchronization. The receiver-emylifier is e two stage amplieier Hith a final limiting stage tripped by the lower bond of the characteristic curve (?) [Hit einer eus dem unteren Knick der Kennlinie horausarbeitenden begrenizenden End-Stufe.] In the plate ourrent circuit of the last tube lie two polarized relays, the toleprinter and the oscillograph relags. The regulator device contains 3 polarized relays which are axcitud by one tuke each. The grids of these tubes are controlled by 3 segments on one of the distributor discs in the mechenical part. By throwing in the betore mentioned 3 polarized relays, which with their contact sides affect the vibrator in the synchronization araplipler, it is possible to influence the frequency In appropriate manner, 1.e. to regulate it. In 1 ig . 3 the receiver amplifter has at i a meter [selector] suithh (Messschalter) for control of tubes of the raceiver amplifler, of the regulator device and the synchronization-amplifier. Knob 2 serves to edjust input voltage. 3 is the input socket for the radio recelver to be connected. At 4 a headset may be plugged in for monitoring. The Storer (Speicher). Apparatus 1313 hes two Storers. As already stated, one Storer is as~ sociated with each message to adapt the telegreph speed of the teleprinters to that of the transuitter to be recelved. Each individual impulse of the Ifve-impulse-groups is held in the 5 impulse-relays. The indiviclual relay has two windings, the oxciter winding and the holding winding. There are also two other relays whose windings lie In the plate cursent circult of a tube associeted to each relay. Phe efrst relay has the function, after the appropriate tube hes recelved on the prid side a short impulse from the diatributor, of sterting the celeprinter associated with that Storer. Then the teleprinter scand by the aid of its sender, which has been reconstructed Por this purpose, the impulse relays of the storer one after the other. According to the atate of the storage relays the proper letter is printgd. After the sender
shaft in the teleprinter has made one revolution it locks autometically. Thiss blocking must be released by an impulse to the start-tube or start-relay of the teleprinter in order to print the next letter. The second relay has the function, after the proper tube has received a short impulse on the grid side from the distributor, , of bringing the Storer into a neutral state, i.e. of preparing it to receive a new letter for storage. This is always the case שhen a letter has been printed by the teleprinter. On the front plate of the Storer is, as shown in fig. 4 at 1, a selector switch (Messchalter). By the sid of thas switeh and a meter in the Control part the exciter currents and holding currents of the Impulse-relays, likewise the tubes for the Start and Clear-out (Loesch) relays can be supervided. Toggle switch (Kippschalter) 2 is provided for receiving enciphered messages. For such reception the sidith must be on "Deuerstart-Esin" (Permanent atinnt. - onl.

The syncmronization-emplifier serves to attain local synchronization, in particular between the vibrator frequency of the synchronization-amplifier and the Irequency supplied by the generator part of the drive mechanism in the mechanical part. Accordingly the synchronization amplifier also eontains a vibrator. The frequency produced in the vibrator can be varied within range of about $500-1000$ cycles. This range corresponds to a locally synchronizable speed range of the distributor brusies of about $150-245 \mathrm{rpm}$. Since the electrical output of the vibrator is too slight to synchronize the drive mechanism, there is a pushpull final stage (?) (Gegenkontaktend-Stufe) which is connected to the vibrator through an intermediate stage. The ac output from the synchronization amplifier amounts to about 10 watts. Change of the synchmonizing frequency is attained byknobs 1 and 2 as shown in fig. 5. With knob 1 the fine seting is made, while the coarse setting is made with knob 2. The toggle switch (Kipphebelschalter) 3 is operated to secure the proper phasins of the epparatus. Control of the four tubes is possible through the meter in the recelver anplifier. The Cont pol part.
This contains essentially the parts which need to be checked during operation. Furthermore, in this part is mounted the transformer for the heating of all tubes in the apparatus. In fig. 6 at 1 is an instrumen for measuring the voltage of the power line. This shows the power voltage when mein switch 2 is off. Swithh 2 switches all power supply units on and off, i.e, the whole epparatus. It proved necessary to be able to switch the Storers on and off as desired and toggle suitches 3 and 4 are for this purpose. To each switch is associated a warning lamp. 5 and 6 , which indiceted the state of the Storer concerned.

Suitch 7 (Kipphebelschalter) is the meter selector switch. If turned up, instrument 8 shows the currents which must be watched in Storer 1. By turning the Selector switioh on the front of Storer 1 all currents can be checked which are shown on the scale of that switch. If switch 7 is on center, then instrument 8 can be used for the currents indicated on the Selector switch scale of the receiver amplifier. When switch 7 is down it permits watching the currents of Storer 2. Toggleswitch 9 is used to cut the receiver-amplifier from the diatributor disc, i.e. signals coming fyom ths sender cannot reawh the distributor and consequently cannot be printed. This break is especially desired when brief diaturbances (Stbruggen) interfere with the signals coming from the sender. Whar the disturbances cease switch 9 is thrown from bosition "FS-bereit" (teleprinter-ieady) to "FS-ein" (teleprinter
shaft in the teleprinter has made one revolution it locks automatically. This blocking must be released by an impulse to the start-tube or start-relay of the teleprinter in order to print the next letter. The second relay has the function, after the proper tube has received a short imoulse on the grid side from the distributor, , of bringing the Storer into a neutral state, 1.e. of preparing it to receive a new letter for storage. This is always the case then a letter has been printed by the teleprinter. On the front plate of the Storer is, as shown in fig. 4 at 1, a selector switch (Messchalter). By the sid of thds switch and a meter in the Control part the exciter currenta and holding currents of the Impulse-relays, likewise the tubes for the Start and Clear-out (Loesch) relays can be supervided. Toggle switch (Kippschalter) 2 is provided for receiving enciphered messages. For such reception the stitch must be on "Deuerstart-Ein" (Permanent at:ant - onl.

The syncmonization-amplifier serves to attain local synchronization, in particular between the vibrator frequency of the synchronization-amplifier and the frequency supplied by the generator part of the dirive mechanism in the mechanical part. Accordingly the synchronization amplifier also sontains a vibrator. The frequency produced in the vibrator can be varied within range of about 500-1000 cycles. This range coriesponds to a locally synchronizable speed range of the distributor brusines of about 150-245 rpm. Since the electrical output of the vibrator is too slight to synchronize the drive mechanism, there is a pushpull final stage (?) (Gegenkontaktend-Stufe) which is connected to the vibrator through an intermediate stage. The ac output from the synchronization amplifier amounts to about 10 watts. Change of the synchmonizing frequency is attained byknobs 1 and 2 as shown in rig. 5. With knob 1 the fine seting is made, while the coarse setting is made with knob 2. The toggle switch (Kipphebelschalter) 3 is operated to secure the proper phasin; of the epparatus. Control of the four tubes is possible through the moter in the recelver amplifier.
The Cont"ol part.
This contains essentially the parts which need to be checked during operation. Furthermore, in this part is mounted the transformer for the heating of all tubes in the apparatus. In fig. 6 at 1 is an instrument for measuring the voltage of the power line. This shows the power voltage when mein switch 2 is off. Swithh 2 switches all power supply units on and off, i.e. the whole epparatus. It proved necessary to be able io switch the Storers on and off as desired and toggle suitches 3 and 4 are for this purpose. To each switch is associated a warning lamp. 5 and 6 , which indicated the state of the Storer concerned.

SWitch $7^{\text {(Kipphebelschalter) is the meter selector switch. If }}$ turned up, instrument 8 showe the currents which must be watched in Stores 1. By turning the selector switioh on the front of Storer 1 all curxents cen be checked which are shown on the scale of that switch. If switch 7 is on center, then instrument 8 can be used for the currents indicated on the Selector switch scale of the receiver amplifier. When switch 7 is down it permits watching the currents of Storer 2. Toggleswitch 9 is used to cut the recelver-amplipier from the diatributor disc, i.e. signels coming foom the sender cannot reash the distributor and consequently cannot be printed. This break is especially desired when brief disturbances (Stbrungen) interfere with the signels coming from the sender. Wher the disturbances cease switch 9 is thrown from position "FS-bereit" (teleprinter-ieady) to "FS-ein" (teleprinter - on), whereupan the apparatus immediately causes the incoming signals to bs printed once more. SWitch 10 is used to regulate

Authoriry NW32823 by Gunara Date $43 / 12$

 YOP SEGRET

 YOP SEGRET}
local synchronization. The rathode ray tube in the mechanicel part serves for recogntion of local synchronization. The position of the switch depends upon the manner of operation of the transmitter to be received, i.e. Whether with + (Arbeitsstrom) or (Ruhestrom) current. The center position of the switah makes possible a thorough chook of the apparatus with teat text which is produced in the machine and brought to the input of the recelver amplifier instead of the text from the remots station. In this way the entire apparatus may be tested. All in the out leads are at the back of the apparatus. These include power line, ground lead for the apparatus, modulation lead, 2 teleprinte: power leads, 2 teleprinter control leads.
Having given a short survey of the individual parts, we siall. now explain the way the apparatus functions

Principle of Apparatus 1313.
According to fig. 7 the wireless eignals 1 come via the antenna 2 to the radio receiver 3. In the figure the sequence of the impulses is shown as it is in A2 operation. Reading from the right we find therefore at l the phase-signal (blue) which is so important for correct synchronization and phasing if the transmission devices.
It consists, as already noted, of two steps of equal length, the first step is an impulse, the second step is blank. This twostep phase-signal is followed by two groups of five impulses belonging to the messages transmitted.

Those of message I are marked red, those of message II green. Then the process is repeated. These impulses come then to the radio receiver 3. They leave this with tone frequency carrier as shown at 4 and are conducted to an amplifier with pealc liwiter 5 (HBchstwertbegrenzer). Here the signals are amplified, rectipled and limited. Finally they excite two relays wired in series. Each reley forms the boginning of a new circuit 6 and 7 , where in each circuit the same processes take place (see at 8 and 9). The signals are no longer ac but do and are conducted via lead 6 to the distributor assembly for evaluation while the impuises of lead 7 are condusted to a Braun tube to be rendered visible. The distributor assembly is driven by a motor 10 which is so arranged that it can be synchronized tnrough lead 21 from a oscillavor with power amplipier 12, i.e. the tone frequency which can be set at 12 determines the speed of motor 10 and keeps this constant for a long period of time. Motor 10 through gearsat 13 drives the distributor shapt 14 whish in turn bears the brush holders 15 and 16 which with their brushes scan the segments of the stationary distributor discs 17 and 28. Furthermore shaft 14 drives the magnetically functioning deflection system 19 of the Braun tube 20. This Braun tube is especially froportant beceuse through it one can check visually the essential functions of the apparatus. The A2 procedure is a synchronized telegraphic procedure. In the present case this means that shart 14 requines the seme time for one revolution as the distributor shat of the remote transifter. However, this aloae is not surficient inasmuch as the distributor brushes 2.5 and 16 must allo be in phase with the distributor brushes of the remote twansmitter. These two essentiel requirements are easily met with the aid of the Braun tube. First there is a "local synchronization". As the name suggests, two processes must occur in the same rhythm. The thing Which sets the tempo in apparatus 1313 is the oscillator 12 with the appended power stage (Leistungsstufe), the part which must adapt itself to the tempo set is the motor 10, Via the lead 11 the rhythm is forced upon the motor in that the so-called synchronszation frequency is imparted to the ac part of the motor. This
does not always mean local synchronization of the motor, hance the spead of the machine must be altered on the de side tutil the speed of the motor corresponds to the given frecuency. In the Control part of the apparatus is a syitch "local syncheoniaation" which, when operated, connects circuit 11 to tne magnetically functioning deflection system (Ablenksystem) of the Braun tube. This switch is not shown in P1E. 7 but it is described fully in the following section. According to the state of local synchronization the pictures on the rluorescent screen (Leuchtsch1rm) of the Braun tube will vary. Fig. 7 shows the screen pheture of an apparatus not in local syncbronization. In oircuit 21 beats (?) (Schwebungen) occur between the frequency coming from the locsl rhythw setter (?) (Taktgeber) 12 and that produced by the motor 10. The motor speed must therefore be changed till a pictive results like that in rig. 7 b . In the case shown, the synchronizing frequency coming from the oscillator 12, is the same then as that from the motor. Any slight change of frequency coming from oscillator rill naturally cause a change in the number of revolutions per minute of the motor and hence a change in the speed of shaft 14. Hence, oscillator 12 is expected to maintain a very constant frequency. It is not eifficult to determine the speed of the remote transmitter. A corresponding frequency is set at l2. It may be that this frequency will have to be reset later. Such necessity 1.s established if the impulses 9 coming through lead 7 reach the deflection system 19 as shown in fig. 7. Then there results the screen picture shown at 20. As is vell known, the phase-signal is sent by the transmitter after every revolution of the distributor shaft. Hence, like all other signals this signal appears in the fluorescent sesean picture. In most cases the phase-signal will wander to the lert or right in the picture arter the initial setting of the synchronization frequency and the attendent establishment of local synchronfzation. By working the frequency-fine-setting [knob] the frequency is now so changed that the phase signal alwक्षs appears In the same spot. Once that has been achieved, then the spped of the distributor shaft 14 is the same as that of the remote transmitter.

This condition was, as stated above, the first requisite for operation. Upon looking more closely at the picture in the Breun tube an especially high nairov deflection (Ablesiiung) 2113 noted In the upper haif of the circle. This mark serves for the setting of the correct phase position. This second requisite for oparation Is rulfilled when the phese-gignal has a well defined position With respect to the mark 21 and indeed it must look as it is shown at 20. The interval between the phase-impulse and mark 21 should correapond to the width of the phase impulse, the distances a snd b in 20 should therefore be equsl. By operating a switch in the synchronization amplifier the phase-signal is brought into the position ikhich is shown in screen picture 20 and hes just been described as the second requisite for operation.
Once the apparatus is running synchronously and in phase with the remote transmitter the printing of the incoming messages may begin. The signsis 1 coming in over lead 6 are led to the distributor disc 27 vie the brushes $1 j$. Here the impulses of message I go to the red fleld, those of message II to the green fleld, and the two step phase-signals to the blue field. Of each incoming impulse of the message transmissions only a very small part(midpulse sensing)(Mittenabtastung) is conducted via lead 22 to the grid of a bube 23. In uncontrolled state the passage of current through the tube is blocked. Only when an impulse reaches the grid can current flow. Since there is a condenser resister assembly in the grid circuit of tube 23, the signals are lengthened and leave tube 23 as shom on lead 24. Through this lead the impulses come via the brush 16 to the actual distributor disc 18 . The 1mpulses of message I are discributed within the red field, those

Fur Jebit
to control the oscillator 12 via lead 25. Through this control procedure, known as regulation, it is supposed to make it possible to equalize small, suddenly appearing changes of speed which originate in the remote transmitter or in apparatus 1313. To tributor 28 come then only the impulses of messages I and II. The leads attached to the several segments of this distributor lead to Storers 26 and 27. There is a Storer for each message. Here the impuise aggregate of the transmitted message is held and the printing of the letter corresponding to the stored impulse aggregate occurs in response to an impulse which is generated on distributor disc 17. Teleprinter 28, therefore, prints only masage I, teleprinter 29 only message II. In what follows the process for message I yill be described: After distributor disc 18 has passed on the lengthened (gedehnt) impulses (red) yia the segment-leads to the storage relays in 26 and operated the relays there, then as soon as the fifth impulse of a group of five has been distributed, on impulse disc i. at 30 an impulse is generated which goes via lead 31 through the storer and causes teleprinter 28 to start. Teleprinter 23 now picks up as rectangular impulses the impulses stored in Storer 26, evaluates them and finally causes them to be printed. This would seem to be the end of the matter but there must now ensue another procedure to restore the relays of Storer 26 so that it is ready to receive the next signal of message I and store the same. This so-called clearing (LBschung) of the Storer Is accomplished on the basis of an impulse which likewise comes from disc 27. The production of this clearing-impulse results at 32 and via lead 33 this 1mpulse is transmitted to Storer 26. In the period between the transmission of the start-impulse at 30 and of the clearing-impulse at 32 comes the clearing of the Storer 26 by tine teleprinter 28. Duping this time a signal of message II has been stored in storer 27 by distributor 17 working with distributos 2.8. At 33 on impulse disc 17 came the start of teleprinter 29 for mesaage II, and at 30 the appropriate storer 27 was again cleared and made ready to receive the next letter of messege II. This process is repeated for each letter, number or sign of both messerge I and message II.
The next section expleins the circuit diagram in all details, including those which here were omitted in the interest of clarity.

How 1313 works (Complete wiring diagram)
In the input lead from the radio receiver lies a choke-condenser unit to keep interference from affecting the receiver. The impulses como IIrst to the switch $U 42$ in the control part. If the switch is in the upper or lower position, the impulses are switched to the entrance of the recelver-amplifier stages. Rectification is by full Wave rectification in Delong circuit, which doubles the voltage. The grid of the next output tube (Endrohr) has such bias that pragticelly no plate current flows. If the rectified amplitudes produce a voltage thich reduces the adjoining tube 's grid voltage to the permissible grid voltage for oneration (ca. 0 volt), then plete current plows and the telegraph salays located in the plate
circuit are operated. If the woltage produced becomes so great that a positive grid voltage results, then the working point of the tubas is displaced to the upper bend (Knick) of the (Kanninie) characteristio curve. The unit then possisses Iimiting erfeot. In the plate circuit lie the two telegraph relays $R 16$ and K. IT (oscillograph and raceiver relays) in series. Thus they

TOP SEERET

work simultaneously. The second winding of these relays is a holding windling. The resistors wired in psrallel with the windings serve for maintalning the prescribed operating values of the relays. From the diagram it can be seen that beley contacts $\mathbb{R} 16$ and $R 17$ have zero potential. From here on therefore every wark impulse (Stromschritt) appears as zero potertiel, slnce the relays opsate with all mark impulses which follor in the transmission of the measages. The impulse compiexes of the two transmitted measages are held by the two relays in two separate chamels. One channel (from oacil2ograph relay R 16) leads to tho Brawz tube which serves for chacking and adfurtment. The other chemmel
(Irom recelver reley F 77) Pinaliy ends in the teleprinters. Por operational control of the tube and relay circuits in the receiver amplifler the meter in the coatrol part is connected to the various oircuits (to meesure voltage drop) by means of syitchee as shown in the diagram.
The. two channels lead into the control part to switch 442. From the tranamitter to be received the celegraphic impulaes mey be sent eithor Mark ($(+$) or Space (-). But since in the apparatus transinssaions axe ouly worked over in Mark oument, there must be a possibility of changing reessages in Spece curient (Ruhestrom) into Marle current (Arbeltsstrom). This may be dore using syitch U 42. How, is obvious from the diagrem. The switch has three positions: + , Test, .. In "test" position tho impulses delivered by tho recelvex are switched out and the test-Bender switched in instesd. The "test" procedure is described later.
Piset we she 11 follow further the channel from R 17 , leeding to the teleprinters. From switch 042 it continues via skitch 044 ("Ready-0n") (vhioh permits interwupting the chennel.) to the impuise dise 1 n the mechanical part. In the diagram the impulse disc 1 s shoun es en unvound wibbon. Both on the loft and on the right aides it has cop, + segments. Over both sides runs a pair of brushes which comnects the segments associated to the left side yith those assoclated to the right side. The telegraphio impulses come to segments of the left side thich lie opposite those on the might side designated $1 a-9 a$ and $1 b-5 b$. These segments correspond to the twice five mark and space steps of the single letbers or sigas of the tro transmissions. Now tif the speed of revolution of the brush is in haxmony with the speed of the taransmitter (symchronization), the brush vill alvays be on a segment when a mark or spacde is sent. Hence, the first impulse of the ILFst message must lall on segment $1 a$, the second impulse of mesaege I on segment 2a, otc... then the inve impulses of message If fell courespondingly on the segrasats $20-50$ (Phase synohronization). Adjustment to phase synchronization is described below. Segments ia $-5 a$ and 2 b - 5b are ell connected end lesd to tube R 51. The grid bies of this tuba is so nogetive that practically no plate current can flov. But since evary mark Impuise appears as zero potential, the grid blas at the grid of the tube is zemo volts with every wexk impulse and plate current folve. The mark impulses now appeer es strengthoned mark frmulsos and reach the left side of the distributor dise.

Both sides are once more represented as unvound wibbons over which a paic of bxushes rotates whith is symchronized and in phase uith the pein of bwushes of the impulse disc. Tha left side of the distributor disc consiats of a closed copper wing. The right 3ide again has twice five segments, corresponding in position to segments $18-5 a$ and $1 b-5 b$ of the 1 mpu se dise. These are designabed a_{2} and a_{5} and $b_{7}-b_{5}$. Segwents $a_{1}-a_{5}$ lead to Storer 1, segwents $b_{1}-b_{5}$ lead to storer 2 . Since the

TOP StGht

brushes of the impulse-disc axe synchronized with those of the distributor-disc, here again the brush is always on a segment When a rank or spece is transmitted, Hence the distributordisc separates the individual impulses of the one message froil those of the other, sssuofing there is syncironization and phasing uith the transwitter, and it sends them through the storexs to tho two toleprinters. The choke condensor in each kine serves for suppression.
In the storer each inpulse produced by a mark works through the distributor disc $\left(a_{1}-a_{5}\right.$ or $\left.b_{1}-b_{5}\right)$ to operate an impulse Felay (R I - R 5). From the diggran it is clear thetareley once operated is held sutomatioally by tha second uinding (holding uinding). The chokes, resisters and condensexs there likewise serve for spark suppression etc. Now when a letter or sign or the message is stored in the five releys of the storer, the teleprinter finds elosed circuits when it feels the storez through the oparated relays, which really correspond to Mark impulses. The telepzinver gets the order to feel through the start-1mpulso. the stant-impulse originates on the right side of the 1mpulsedisc. Thero there are two segments marked S_{y} and S_{2}. They $11 e$ bohind the associated impulse segments la - $5 a a^{2}$ an $-5 b$. opposite on the lerit side lie segments yith zero potential. The olicult from segment s_{2} to stoxer 2 can be followed. In storar 2 the psth leads via jeley contact $r 9 / 1$ or via switch U 50 to the grid of tube R3 6. The grid blas here is once more so high that practicslly no plate current ilows. If the pais of brushes hits Start-segment S_{2}, the grid of tubs R8 6 receives zero potent1al, and plate curfent Plows. The relay $R 6$ in the plate circuit operetes. Conteet w $6 / I$ switches +60 v to the coupling magiet in the teleprinter. With this the sender shart makes one ravolubion and operates the sender contacts through the cans. The teloprinter, in contrast to ordinary teleprinters, has indvidual leads frou the sendor contacts leading to the atorears. Thane the circuits are closed on not closed according to the stored letter so that the recalver magaet in the teloprinter peseives mank or apsce through the seader in the teleprinter. Prow this coubinetion results the printing of the letter. Once this procedure is itnished, the storer must be cleared again to be free tor the following letter. The origin of this procedure is I1kevise to be found on the impulse-dise. On the right side od the impuise-disc aro two more segments I_{9} and I_{2}. Opposite are segments with zero potentis. . In the dikgram tho path from the clearing segment I_{2} to storer 2 may be followed. In the storer it goes vie relay contact x / II on switch U 50 to tube R8 8 which has the same gritd bias as stant-tubs R.d 6. If the pair of brushes of the impulse disc hits the clearing segment, the grid of R8 8 becomes zero volts, plate current flows and relay R 8 operates. Through the five contacts of this relay current supply to the individua? holding windings of impulse relays R I-5 is interrupted. These relays bleone without current, drop, and the storer $1 s$ resdy for new storage. The circuits of the tubes end relays 82 eonnected by selector switch to the meter in the control part and checked by this. The operating voltages for the teleprinters sxe also provided through the storess. Suitching In ie by the control part by means of awitches 445 and 446 ; the storew axd the telepsinter are sultched sut when relay R io is switchad 1n. Glow lemps Gi 22 and (fi 23 sexve for controls. Cuxpent supply for holding vindings of the impulse relays R 1-5 pesses first through the coil of relay $R 9$. Contacts x 9/I and
r 9/II connect the start and clearing segments to thegrids of the appropriate tubes. Hence, a start or stop impulse can only be effective if at least one impulse out of a group of five has been stored since only then is relay $R 9$ operated. For some types of transmission it is essential that starting onsuo reguarly without regard to eny storing. For this purpose switch $U 50$ is operated. In this way the contacts of F 9 are bypussed.

The channel starting with oscillograph relay $k 16$ goes from switch 042 in the control part to switch $U 43$, where it can be interrupted by operating this switch, and ixom there to the vechanical part to the derfaction system (Ablenksystem) of the Braun tube. The deflection system consists of 4 coils mounted on a common ping sheped core. This rotates synchronously with the brushes of the discs around the Braun tube. As evident from the diagram, two coils wired in parallel of the deflection systern constantly receive de from the 12 volt stage which is very carefully smoothed for this purpose. If this system now rotaies, a circle appoars on the sereen of the Braun tube. The diameter of the circle is adjusted at resistor V 326. Cursent is introduced into these coils via brushes B 55 and B 57. The impulses from the recelver amplifier reach the other pair of coils wired in series via resistor in 327 and then on through brush B 56. Since the Raric impulses heve zero potential a further deflection of the cathode rays ensues throhgh the second pair of coils. On the screen of the tube mark impulses appear as rectangular deflections of the basic circle. The helght of the deflection depends upon the setting of resistor W 327. The phase-signal which oucurs regularly in the sending of the messages must necesserily appear on the Pluorescent screen, at first in any position whatsoever. If there is synchronism with the transmitter, 1.e. If the impulses of the two messages actually strike the corresponding segment of the impulse and distributor discs, the phase-signal will appear at a daijnite point on the screen. This point is marked by the "Iimit sign" (Begrenzungszeichen). This likewise has its origin on the right side of the impulse disc. There is another segment B. Opposite on the left side of the impulse disc lies a segment which is on zero potential theough switch U 43 in the control part. Segment B leads to resistar H 327. If the brush of the impulse disc hits segment B, zero potential is transmitted to resister $W 327$, i.e. the resister is pareially shotted, as shown by the diagram. In this way the voltage is increased and on the screen appears an additional derlection (the limit sign) as long as the brush touches segment B.

The driving motor consists of two parts, the de motor with shunct vizing and the tone Prequency generator. The armature current can be watched on the meter in the control part by using a switch in the receiver arplifiex. (voltage drop at resister W 330). Through a set of gears the brushes of the discs of the deflection system and the test sender are driven. The Irequency required for synchronization is taken off from the synchronization amplifier. As shown by the diagram, the synchronization amplifier has a coarse setting for adusting the froquency \because oh consists of a stage-switch which can switch fixed condensers on or off. These lie in series with the condensers (Kapazitd \ddagger) C 112 and C 101. For fine setting there is a variable condensor. As inductance the primary winding of transformer U 5 is used. The frequency is preamplified in a second tube inad then reaches the push-pull pinal stage (?) (GegenkontaktEndstafe). From there it is conducted to the motor in the mechanical
part. The individual circuits of the tubes are connected for control purposes by switches mounted in the receiver amplifier to the meter in the control part.
For securing phase synchronism there are two more switches U 4 and $\mathbb{U} 5$ in the synchronization amplifier. When switch 4 is operated the condenser C 112, which is normally in series, is shorted. This lowers the frequency and the speed of the motor is reduced. On the screen the image of the phase-signal wanders to the left. When switch 05 is operated, condenser C 101 is connected as supplement to condenser C 112 and the set condensers. The irequency becomes higher and the motor runs faster. The phase-signal wanders to the right. The switches are operated until the phase-signal has moved to the marked position.
To neutralize variations in speed automatically there is a device Which makes it possible to influence the speed of the motor directly by the phase-signal from outside. On the right side of the impulse disc in the lower part are three wore segments F, V and R. opposite lies a sagment which recaives the telegraphic signals from the receiver amplifier as zero potential. To the three segments correspond three tubes R8 18 - R8 20 located in the regulating device in the receiver amplifier. The grid voltage is again so negative that practically no plate current plows. If one of the segments receives zero potential through the brush, the blas at the grid of the associated tube becomes zero volt. The relays lying in the plate current circuit of the tubes operate and influence the condenser of the resonant circuit (Schvingkreis) in the symehronization amplipier. When there is synchronism the maxk impulse of the phase-signal progresses so that during the period of the mark impulse segments F and V are touched by the brush. Then contact r 28/I and contact r 19/I transfer. This brings no change since contact re 19/I supplements contact r 18/I. If all three segments are touched, the condensor (Kapazitat) C 112 IJing in series is shorted. This occurs through contact r 20/I via contact x 18/I. Hence, if segment R is Iikewise touched, the mechine puns too fist. Due to the brief increase in capacity the machine drops back a bit. If the mechine is too slow and in consequence during the mark impulse only sogment F is touched, the normelly shorted Condensor C 101 becomes effective by the transfer of ontact r 18/I. The irequency becomes momentarily higher and the machins is accelerated. The plate current circuits of the three tubes are reconnected by means of switches to the meter in the control part for checking purposes.

In the mechanical part is still another disc: the test-sender. It serves for testing the entire apparatus including the teleprinter without the receiver. In the diagram the test-sender is represented as an unwound ribbon. The left side consists of a closed copper ring, the right side is made up of copper segments of uniform size alternating with insulating sections of the sama size. The copper segments are connected with the copper ring. Brushes pass over both sides. The side with the segments receives the frequency frm the synchronization amplifier through the brush. From the left side tha scannod Prequency pasees to switch $\overline{4} 42$ in the control part. The number of the segments on the pight side yield at the specipied spead a combination of impulses which permits teleprinter 1 to print Y and teleprinter 2 to print R.. If switch $U 42$ is put on center (testing - Prifen), the impulses of the test-sender, which are shorted in the positions + and - are connected to the input terminal of the receiver anplifier. The resister W 324 reduces the voltage of the impulses to the proper input voltage for the receiver amplifler.

TOP SECRET

Suftch U 41 in the control part, des1gnated "Jretleher Gloichleup", serves to check the local synchmonization. By this is understood. the synchrontzation of the wehine with the frequoncy with which the machine is supposed actualiy to run, which is produced by the synchronization emplifiar. IP silitch 441 is opereted, all impulses are cut off from the chamnel leadtng to the Braun tube. On the other hand the Bxaun tube receives the frequency of the synchwonization amplifier and the frequenoy supplied by the tone frequenoy generator of the duivlng machine (motor ?). Erous the figure which axises on the R2uores bent soreor through this mixture of frequencies the state ox zocel syncleonteation can be dotermined. In the contzroz pant is s.and a lletstrero (rovex tranaformer) which supplies hester voltages for tho vassory tubus. Tha heoter leeds snd power leads 200220 V tho (fend loads) and the mobor leeds exo not shom in the diagram.

Oporettag rules for apperatus 2313.
 the outbonke gnifot. devtaos et the back of the eppasatus ape switched off. hopmover, ohs mais suitch 2 Ln P土g. 6 must be on "Aus". When

coll al atretor of tho hrman anet glow. If only one aleotrode giovo,

 by lrnova miter.

 trknsaltonn

 20. Wuthot mop

 good bpawacson.

 of Pate 5 mindadthe (

 tiba.
 thentill in tas propmp posstion on the soseon. She phase-stgnal must abt whatiex.

Suitch U 41 in the control pari, designated. "Hxtlicher Glatchleup", serves to chocic the local synchmonization. By this is understood. the synchronization of the mechine with the frequoncy with which the mechine is supposed actually to rum, which is produced by the synohronizetion Euplifjor, If switch 441 is operated, all impulses are cut off from the chamel leadtrg to the Braun tube. On the other hand the Breven tube recelves the frequency of the synchronization amplifler and the frequanoy supplled by the tone frequenoy generator of the driving machine (motor ?). Ryom the figure which axises on the S2uozes cent aoneon thwough this mixtume of frequencies the state of 2000.7 synch omization can be detormined. In the control part is s2so E Jotztatafo (roven bxunsfozmer) which supplies hestoz voltages for the vartoug tuber. Tha heater Ioeds and power leads for 220 V the (2sed leads) and tho mater leads axe not shown ta the diagran.

Opersting rules for spperatus 2313.
Beflore tho sppasatus 1 is comsected to the 220 v oc power. 31 no see that?
 olf. Norpovier, the wain wuitich $2 \operatorname{In}$ 2ig. 6 must os on "AUS". When the mopmatue han haen geounded and the connaction to the locel potren sutaply sucs vis the atbles suppliod for the purpose, the type ar ratuge han bo chaknd. For this test there is a glov lamp
"hpaturingbayt" (67po of voltege) on the bacic of the spparetus.
 tho MLim hate th alaxiat Ant oun not bo used.

 by lmom ninles.

 sfopd opvethbion.

 tribs.
 cpornis in tha proper posstion on the someon. The phase-sspmal must 4g: 4 ufars

Sulteh U 41 in the control part, dealgnated "Oretlichor Gloichleupt, serves to check the local synchronization. By this is understood. the symehronteation of the wehtne with the Prequency with wich the wachine 10 supposed actually to mun, which is produced by the synchrontzation empliftor, Te suitch 441 is oporated, all impulses spe cut off froin the chamel leadtre to the Sxaun tube. On the other hand the Breum tube recelves, the Irequency of the synchrontastion amplifier and the fraquency supplied by the tone frequeney generator of the driving machine (motor ?). From the figure which arises on the shuores cent someen through this mixiture of Irequencies the state of 2000 ? symolvoal pation can be determined. In the contwol part is H2eo s Hethixafo (boren transformer) which supplies heeter volteges fron the wampurg buhes. Tha heater leeds and power leads tow 220 V mp (Hed loads) and the woter leeds exo not shom in the disgram.

Gporetaing mules Por spparatus 2313.
bafore tho apoybtio 1 ai cormsoted to the 220 v ac power. Itne see that

 tha mpprature hat haan epomite and the connsction to the locel

"tpanmiengaty" (ape of voltege) on the beck of the gppayntum.
 tho Jire die fo ofreant mat oun not bo used.

 Voy aporsules 420 Follovidy Lobtanationa ero valfd:

> D. lor linumaniles

 trannulvorn

 good Toporuction.

 Lubs.

 agh vender.

18. After local synchronization and comect phasing have been astablished aet selector switch 1 of ilg. 3 on "M". The inder of instrument 8 fig. 6 must stand in the red field. Thase requirement is mot by using lanob 5 is Plg. 2. While dolng thit the locol synobronizetion must be retched in the Bram tuibe.
19. According to the opereting posttion syitich in storers 2 and 2 using svitchos 3 and 4.
20. Set switoh 1 In the stovers on "Deverstart-Aus" (pemenent scevt - ofe) Accoxding to 151g. 4. Spacial dixactions ere isaued for thiE.
21. During operatlon conatantly yatch the recsiver atatus et the recelver, the loca? symolurontzetion of the appareetus and tho phasting in the Braun tube.
22. In case of brief sovere disturbances theav syitch 9 248. 6 to
"Fg-bereft" (Telomointer - waady). Switch beck to "FS-Zin" (teleprinter - on) st onca zad wateh polnt (spot ?) 21.
23. If thare is cay suspicion that the teleprinter is not peinting correctiy oheck the apparstus thoughout using sulteh il in 11 g . 6 . Bechine 2 then prints Ψ whon the potontiometor 2 of ILE. 3 is furned. on finll and machine 2 prints R.
24. Heve axy troubles remedled only by epproved porsomel.

Halghts and measurersents.
Weights:

Frems without inacrets Mechanical. part 12 v stage 60 v strge 4. voodaz boxes With cable Tube ractilier I TVo storess Tube rectifues II Synchandzation anplifiea Recelvar supisfier Control part	$\begin{aligned} & 72 \mathrm{kgg} \\ & 20.5 \\ & 20.5 \\ & 17.5 \\ & .15 .5 \\ & 15 . \mathrm{kg} \\ & 12 \\ & 11.5 \\ & 10.5 \\ & 9.5 \\ & 7 \end{aligned}$
total vel.ght Veight of caae	$\begin{gathered} 210.5 \mathrm{kgg} \\ 92 . \mathrm{kg} \end{gathered}$
Totel shipping veight	302.5 kg

Size of case	
Holght	960 mm
Width	1545 mm
Depth	625 mu

Cument consumption operating on 220 v ac Ilne

$$
1_{\mathrm{H}}=\mathrm{ce} .4 \mathrm{amp} .
$$

R.W.P. 1946.

